Cargando…

Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters

In this paper, an adaptation method for adjusting the scaling parameters of an unscented Kalman filter (UKF) is proposed to improve the estimation performance of the filter in dynamic conditions. The proposed adaptation method is based on a sequential algorithm that selects the scaling parameter usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Chang Ho, Kim, Sun Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839258/
https://www.ncbi.nlm.nih.gov/pubmed/35162001
http://dx.doi.org/10.3390/s22031257
_version_ 1784650326339485696
author Kang, Chang Ho
Kim, Sun Young
author_facet Kang, Chang Ho
Kim, Sun Young
author_sort Kang, Chang Ho
collection PubMed
description In this paper, an adaptation method for adjusting the scaling parameters of an unscented Kalman filter (UKF) is proposed to improve the estimation performance of the filter in dynamic conditions. The proposed adaptation method is based on a sequential algorithm that selects the scaling parameter using the user-defined distribution of discrete sets to more effectively deal with the changing measurement distribution over time and avoid the additional process for training a filter model. The adaptation method employs regularized optimal transport (ROT), which compensates for the error of the predicted measurement with the current measurement values to select the proper scaling parameter. In addition, the Sinkhorn–Knopp algorithm is used to minimize the cost function of ROT due to its fast convergence rate, and the convergence of the proposed ROT-based adaptive adjustment method is also analyzed. According to the analysis results of Monte Carlo simulations, it is confirmed that the proposed algorithm shows better performance than the conventional algorithms in terms of the scaling parameter selection in the UKF.
format Online
Article
Text
id pubmed-8839258
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88392582022-02-13 Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters Kang, Chang Ho Kim, Sun Young Sensors (Basel) Article In this paper, an adaptation method for adjusting the scaling parameters of an unscented Kalman filter (UKF) is proposed to improve the estimation performance of the filter in dynamic conditions. The proposed adaptation method is based on a sequential algorithm that selects the scaling parameter using the user-defined distribution of discrete sets to more effectively deal with the changing measurement distribution over time and avoid the additional process for training a filter model. The adaptation method employs regularized optimal transport (ROT), which compensates for the error of the predicted measurement with the current measurement values to select the proper scaling parameter. In addition, the Sinkhorn–Knopp algorithm is used to minimize the cost function of ROT due to its fast convergence rate, and the convergence of the proposed ROT-based adaptive adjustment method is also analyzed. According to the analysis results of Monte Carlo simulations, it is confirmed that the proposed algorithm shows better performance than the conventional algorithms in terms of the scaling parameter selection in the UKF. MDPI 2022-02-07 /pmc/articles/PMC8839258/ /pubmed/35162001 http://dx.doi.org/10.3390/s22031257 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kang, Chang Ho
Kim, Sun Young
Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters
title Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters
title_full Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters
title_fullStr Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters
title_full_unstemmed Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters
title_short Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters
title_sort regularized optimal transport based on an adaptive adjustment method for selecting the scaling parameters of unscented kalman filters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839258/
https://www.ncbi.nlm.nih.gov/pubmed/35162001
http://dx.doi.org/10.3390/s22031257
work_keys_str_mv AT kangchangho regularizedoptimaltransportbasedonanadaptiveadjustmentmethodforselectingthescalingparametersofunscentedkalmanfilters
AT kimsunyoung regularizedoptimaltransportbasedonanadaptiveadjustmentmethodforselectingthescalingparametersofunscentedkalmanfilters