Cargando…
Experimental Study on Two-Dimensional Rotatory Ultrasonic Combined Electrochemical Generating Machining of Ceramic-Reinforced Metal Matrix Materials
According to the machining characteristics of ceramic-particle-reinforced metal matrix composites, an experimental study on difficult-to-machine materials was carried out by two-dimensional (2D) rotatory ultrasonic combined electrolytic generating machining (RUCEGM), which organically combined an ul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839304/ https://www.ncbi.nlm.nih.gov/pubmed/35161624 http://dx.doi.org/10.3390/s22030877 |
Sumario: | According to the machining characteristics of ceramic-particle-reinforced metal matrix composites, an experimental study on difficult-to-machine materials was carried out by two-dimensional (2D) rotatory ultrasonic combined electrolytic generating machining (RUCEGM), which organically combined an ultrasonic effect with a high-speed rotating tool electrode and electrolysis. After building the one-dimensional (1D) and 2D-RUCEGM systems, the factors influencing the combined machining process were analyzed and the experiments on RUCEGM were conducted to explore the feasibility and advantages of 2D-RUCEGM. The experimental results showed that, compared with 1D-RUCEGM, 2D-RUCEGM had higher accuracy, which increased about 21% and also reduced the machining time. Under certain conditions, the efficiency of 2D-RUCEGM was proportional to the voltage, and the machining efficiency could be enhanced by increasing the feed rate. The inter-electrode voltage detection module used in the experiment could improve the machining stability of the system. |
---|