Cargando…
Image Dehazing Using LiDAR Generated Grayscale Depth Prior
In this paper, the dehazing algorithm is proposed using a one-channel grayscale depth image generated from a LiDAR point cloud 2D projection image. In depth image-based dehazing, the estimation of the scattering coefficient is the most important. Since scattering coefficients are used to estimate th...
Autores principales: | Chung, Won Young, Kim, Sun Young, Kang, Chang Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839317/ https://www.ncbi.nlm.nih.gov/pubmed/35161944 http://dx.doi.org/10.3390/s22031199 |
Ejemplares similares
-
Color Image Generation from Range and Reflection Data of LiDAR
por: Kim, Hyun-Koo, et al.
Publicado: (2020) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
Real-time depth completion based on LiDAR-stereo for autonomous driving
por: Wei, Ming, et al.
Publicado: (2023) -
Synthesis of LiDAR-Detectable True Black Core/Shell Nanomaterial and Its Practical Use in LiDAR Applications
por: Jekal, Suk, et al.
Publicado: (2022) -
Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer
por: Sun, Jia, et al.
Publicado: (2017)