Cargando…
Data Loss Reconstruction Method for a Bridge Weigh-in-Motion System Using Generative Adversarial Networks
In the application of a bridge weigh-in-motion (WIM) system, the collected data may be temporarily or permanently lost due to sensor failure or system transmission failure. The high data loss rate weakens the distribution characteristics of the collected data and the ability of the monitoring system...
Autores principales: | Zhuang, Yizhou, Qin, Jiacheng, Chen, Bin, Dong, Chuanzhi, Xue, Chenbo, Easa, Said M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839323/ https://www.ncbi.nlm.nih.gov/pubmed/35161604 http://dx.doi.org/10.3390/s22030858 |
Ejemplares similares
-
Model Updating Concept Using Bridge Weigh-in-Motion Data
por: Hekič, Doron, et al.
Publicado: (2023) -
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System
por: Kim, Sungkon, et al.
Publicado: (2009) -
Tomographic reconstruction with a generative adversarial network
por: Yang, Xiaogang, et al.
Publicado: (2020) -
Retrospective Motion Correction in Multishot MRI using Generative Adversarial Network
por: Usman, Muhammad, et al.
Publicado: (2020) -
Water Cherenkov detector reconstruction by Generative Adversarial Neural networks
por: Grigolia, Giorgi
Publicado: (2021)