Cargando…
Exploring Physiological Signal Responses to Traffic-Related Stress in Simulated Driving †
In this paper, we propose a relatively noninvasive system that can automatically assess the impact of traffic conditions on drivers. We analyze the physiological signals recorded from a set of individuals while driving in a simulated urban scenario in two different traffic scenarios, i.e., with traf...
Autores principales: | Zontone, Pamela, Affanni, Antonio, Piras, Alessandro, Rinaldo, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839336/ https://www.ncbi.nlm.nih.gov/pubmed/35161685 http://dx.doi.org/10.3390/s22030939 |
Ejemplares similares
-
Stress Evaluation in Simulated Autonomous and Manual Driving through the Analysis of Skin Potential Response and Electrocardiogram Signals
por: Zontone, Pamela, et al.
Publicado: (2020) -
Driver Attention Assessment Using Physiological Measures from EEG, ECG, and EDA Signals †
por: Aminosharieh Najafi, Taraneh, et al.
Publicado: (2023) -
Drivers’ Mental Engagement Analysis Using Multi-Sensor Fusion Approaches Based on Deep Convolutional Neural Networks
por: Aminosharieh Najafi, Taraneh, et al.
Publicado: (2023) -
Development of an EEG Headband for Stress Measurement on Driving Simulators †
por: Affanni, Antonio, et al.
Publicado: (2022) -
Traffic and Driving Simulator Based on Architecture of Interactive Motion
por: Paz, Alexander, et al.
Publicado: (2015)