Cargando…
Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives
The sole effect of the microstructure of biodegradable isodimorphic poly(butylene succinate)-ran-poly(ε-caprolactone) random copolyesters on their rheological properties is investigated. To avoid the effect of molecular weight and temperature, two rheological procedures are considered: the activatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839382/ https://www.ncbi.nlm.nih.gov/pubmed/35160612 http://dx.doi.org/10.3390/polym14030623 |
_version_ | 1784650356119044096 |
---|---|
author | Sandoval, Aleida J. Fernández, María Mercedes Candal, María Virginia Safari, Maryam Santamaria, Antxon Müller, Alejandro J. |
author_facet | Sandoval, Aleida J. Fernández, María Mercedes Candal, María Virginia Safari, Maryam Santamaria, Antxon Müller, Alejandro J. |
author_sort | Sandoval, Aleida J. |
collection | PubMed |
description | The sole effect of the microstructure of biodegradable isodimorphic poly(butylene succinate)-ran-poly(ε-caprolactone) random copolyesters on their rheological properties is investigated. To avoid the effect of molecular weight and temperature, two rheological procedures are considered: the activation energy of flow, E(a), and the phase angle versus complex modulus plots. An unexpected variation of both parameters with copolyester composition is observed, with respective maximum and minimum values for the 50/50 composition. This might be due to the peculiar chain configurations of the copolymers that vary as a function of comonomer distribution within the chains. The same chain configuration variations are responsible for the isodimorphic character of the copolymers in the crystalline state. Tack tests, performed to study the viability of the copolyesters as environmentally friendly hot melt adhesives (HMA), reveal a correlation with rheological results. Tackiness parameters, particularly the energy of adhesion obtained from stress-strain curves during debonding experiments, are enhanced as melt elasticity increases. Based on the carried-out analysis, the link microstructure-rheology-tackiness is established, allowing selecting the best performing HMA sample considering the polymer chemistry of the system. |
format | Online Article Text |
id | pubmed-8839382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88393822022-02-13 Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives Sandoval, Aleida J. Fernández, María Mercedes Candal, María Virginia Safari, Maryam Santamaria, Antxon Müller, Alejandro J. Polymers (Basel) Article The sole effect of the microstructure of biodegradable isodimorphic poly(butylene succinate)-ran-poly(ε-caprolactone) random copolyesters on their rheological properties is investigated. To avoid the effect of molecular weight and temperature, two rheological procedures are considered: the activation energy of flow, E(a), and the phase angle versus complex modulus plots. An unexpected variation of both parameters with copolyester composition is observed, with respective maximum and minimum values for the 50/50 composition. This might be due to the peculiar chain configurations of the copolymers that vary as a function of comonomer distribution within the chains. The same chain configuration variations are responsible for the isodimorphic character of the copolymers in the crystalline state. Tack tests, performed to study the viability of the copolyesters as environmentally friendly hot melt adhesives (HMA), reveal a correlation with rheological results. Tackiness parameters, particularly the energy of adhesion obtained from stress-strain curves during debonding experiments, are enhanced as melt elasticity increases. Based on the carried-out analysis, the link microstructure-rheology-tackiness is established, allowing selecting the best performing HMA sample considering the polymer chemistry of the system. MDPI 2022-02-06 /pmc/articles/PMC8839382/ /pubmed/35160612 http://dx.doi.org/10.3390/polym14030623 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sandoval, Aleida J. Fernández, María Mercedes Candal, María Virginia Safari, Maryam Santamaria, Antxon Müller, Alejandro J. Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives |
title | Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives |
title_full | Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives |
title_fullStr | Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives |
title_full_unstemmed | Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives |
title_short | Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives |
title_sort | rheology and tack properties of biodegradable isodimorphic poly(butylene succinate)-ran-poly(ε-caprolactone) random copolyesters and their potential use as adhesives |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839382/ https://www.ncbi.nlm.nih.gov/pubmed/35160612 http://dx.doi.org/10.3390/polym14030623 |
work_keys_str_mv | AT sandovalaleidaj rheologyandtackpropertiesofbiodegradableisodimorphicpolybutylenesuccinateranpolyecaprolactonerandomcopolyestersandtheirpotentialuseasadhesives AT fernandezmariamercedes rheologyandtackpropertiesofbiodegradableisodimorphicpolybutylenesuccinateranpolyecaprolactonerandomcopolyestersandtheirpotentialuseasadhesives AT candalmariavirginia rheologyandtackpropertiesofbiodegradableisodimorphicpolybutylenesuccinateranpolyecaprolactonerandomcopolyestersandtheirpotentialuseasadhesives AT safarimaryam rheologyandtackpropertiesofbiodegradableisodimorphicpolybutylenesuccinateranpolyecaprolactonerandomcopolyestersandtheirpotentialuseasadhesives AT santamariaantxon rheologyandtackpropertiesofbiodegradableisodimorphicpolybutylenesuccinateranpolyecaprolactonerandomcopolyestersandtheirpotentialuseasadhesives AT mulleralejandroj rheologyandtackpropertiesofbiodegradableisodimorphicpolybutylenesuccinateranpolyecaprolactonerandomcopolyestersandtheirpotentialuseasadhesives |