Cargando…
LSTM in Algorithmic Investment Strategies on BTC and S&P500 Index
We use LSTM networks to forecast the value of the BTC and S&P500 index, using data from 2013 to the end of 2020, with the following frequencies: daily, 1 h, and 15 min data. We introduce our innovative loss function, which improves the usefulness of the forecasting ability of the LSTM model in a...
Autores principales: | Michańków, Jakub, Sakowski, Paweł, Ślepaczuk, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839390/ https://www.ncbi.nlm.nih.gov/pubmed/35161663 http://dx.doi.org/10.3390/s22030917 |
Ejemplares similares
-
Applying Hybrid ARIMA-SGARCH in Algorithmic Investment Strategies on S&P500 Index
por: Vo, Nguyen, et al.
Publicado: (2022) -
Energy and cost efficiency of Bitcoin mining endeavor
por: Jabłczyńska, Małgorzata, et al.
Publicado: (2023) -
Artificial Neural Networks Performance in WIG20 Index Options Pricing
por: Wysocki, Maciej, et al.
Publicado: (2021) -
Genetic algorithms and investment strategies
por: Bauer, Richard J., 1950-
Publicado: (1994) -
LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis
por: Yang, Haohua
Publicado: (2022)