Cargando…
An Efficient Frequency Estimator for a Complex Exponential Signal Based on Interpolation of Selectable DTFT Samples
The frequency estimation of complex exponential carrier signals in noise is a critical problem in signal processing. To solve this problem, a new iterative frequency estimator is presented in this paper. By iteratively computing the interpolation of DTFT samples, the proposed algorithm obtains a fin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839431/ https://www.ncbi.nlm.nih.gov/pubmed/35161606 http://dx.doi.org/10.3390/s22030861 |
Sumario: | The frequency estimation of complex exponential carrier signals in noise is a critical problem in signal processing. To solve this problem, a new iterative frequency estimator is presented in this paper. By iteratively computing the interpolation of DTFT samples, the proposed algorithm obtains a fine frequency estimate. In addition, its mean square error (MSE) analysis is presented in this paper. By analyzing influences of the selectable parameters on the estimation accuracy of the model, a method for choosing appropriate parameters is discussed, helping to reduce the estimation error of the proposed estimator. Simulation results show that compared with other algorithms with a comparable estimation accuracy, the proposed iterative estimator can obtain a root mean square error (RMSE) that is closer to Cramér–Rao lower bound (CRLB). |
---|