Cargando…

Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model

This investigation aimed to evaluate the antibacterial effect of polymeric nanoparticles (NPs), functionalized with calcium, zinc, or doxycycline, using a subgingival biofilm model of six bacterial species (Streptococcus oralis, Actinomyces naeslundii, Veillonela parvula, Fusobacterium nucleatum, Po...

Descripción completa

Detalles Bibliográficos
Autores principales: Bueno, Jaime, Virto, Leire, Toledano-Osorio, Manuel, Figuero, Elena, Toledano, Manuel, Medina-Castillo, Antonio L., Osorio, Raquel, Sanz, Mariano, Herrera, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839475/
https://www.ncbi.nlm.nih.gov/pubmed/35160348
http://dx.doi.org/10.3390/polym14030358
_version_ 1784650378631970816
author Bueno, Jaime
Virto, Leire
Toledano-Osorio, Manuel
Figuero, Elena
Toledano, Manuel
Medina-Castillo, Antonio L.
Osorio, Raquel
Sanz, Mariano
Herrera, David
author_facet Bueno, Jaime
Virto, Leire
Toledano-Osorio, Manuel
Figuero, Elena
Toledano, Manuel
Medina-Castillo, Antonio L.
Osorio, Raquel
Sanz, Mariano
Herrera, David
author_sort Bueno, Jaime
collection PubMed
description This investigation aimed to evaluate the antibacterial effect of polymeric nanoparticles (NPs), functionalized with calcium, zinc, or doxycycline, using a subgingival biofilm model of six bacterial species (Streptococcus oralis, Actinomyces naeslundii, Veillonela parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans) on sandblasted, large grit, acid-etched titanium discs (TiDs). Undoped NPs (Un-NPs) or doped NPs with calcium (Ca-NPs), zinc (Zn-NPs), or doxycycline (Dox-NPs) were applied onto the TiD surfaces. Uncovered TiDs were used as negative controls. Discs were incubated under anaerobic conditions for 12, 24, 48, and 72 h. The obtained biofilm structure was studied by scanning electron microscopy (SEM) and its vitality and thickness by confocal laser scanning microscopy (CLSM). Quantitative polymerase chain reaction of samples was used to evaluate the bacterial load. Data were evaluated by analysis of variance (p < 0.05) and post hoc comparisons with Bonferroni adjustments (p < 0.01). As compared with uncovered TiDs, Dox-NPs induced higher biofilm mortality (47.21% and 85.87%, respectively) and reduced the bacterial load of the tested species, after 72 h. With SEM, scarce biofilm formation was observed in Dox-NPs TiDs. In summary, Dox-NPs on TiD reduced biofilm vitality, bacterial load, and altered biofilm formation dynamics.
format Online
Article
Text
id pubmed-8839475
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88394752022-02-13 Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model Bueno, Jaime Virto, Leire Toledano-Osorio, Manuel Figuero, Elena Toledano, Manuel Medina-Castillo, Antonio L. Osorio, Raquel Sanz, Mariano Herrera, David Polymers (Basel) Article This investigation aimed to evaluate the antibacterial effect of polymeric nanoparticles (NPs), functionalized with calcium, zinc, or doxycycline, using a subgingival biofilm model of six bacterial species (Streptococcus oralis, Actinomyces naeslundii, Veillonela parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans) on sandblasted, large grit, acid-etched titanium discs (TiDs). Undoped NPs (Un-NPs) or doped NPs with calcium (Ca-NPs), zinc (Zn-NPs), or doxycycline (Dox-NPs) were applied onto the TiD surfaces. Uncovered TiDs were used as negative controls. Discs were incubated under anaerobic conditions for 12, 24, 48, and 72 h. The obtained biofilm structure was studied by scanning electron microscopy (SEM) and its vitality and thickness by confocal laser scanning microscopy (CLSM). Quantitative polymerase chain reaction of samples was used to evaluate the bacterial load. Data were evaluated by analysis of variance (p < 0.05) and post hoc comparisons with Bonferroni adjustments (p < 0.01). As compared with uncovered TiDs, Dox-NPs induced higher biofilm mortality (47.21% and 85.87%, respectively) and reduced the bacterial load of the tested species, after 72 h. With SEM, scarce biofilm formation was observed in Dox-NPs TiDs. In summary, Dox-NPs on TiD reduced biofilm vitality, bacterial load, and altered biofilm formation dynamics. MDPI 2022-01-18 /pmc/articles/PMC8839475/ /pubmed/35160348 http://dx.doi.org/10.3390/polym14030358 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bueno, Jaime
Virto, Leire
Toledano-Osorio, Manuel
Figuero, Elena
Toledano, Manuel
Medina-Castillo, Antonio L.
Osorio, Raquel
Sanz, Mariano
Herrera, David
Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
title Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
title_full Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
title_fullStr Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
title_full_unstemmed Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
title_short Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model
title_sort antibacterial effect of functionalized polymeric nanoparticles on titanium surfaces using an in vitro subgingival biofilm model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839475/
https://www.ncbi.nlm.nih.gov/pubmed/35160348
http://dx.doi.org/10.3390/polym14030358
work_keys_str_mv AT buenojaime antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT virtoleire antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT toledanoosoriomanuel antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT figueroelena antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT toledanomanuel antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT medinacastilloantoniol antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT osorioraquel antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT sanzmariano antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel
AT herreradavid antibacterialeffectoffunctionalizedpolymericnanoparticlesontitaniumsurfacesusinganinvitrosubgingivalbiofilmmodel