Cargando…
3D Static Point Cloud Registration by Estimating Temporal Human Pose at Multiview
This paper proposes a new technique for performing 3D static-point cloud registration after calibrating a multi-view RGB-D camera using a 3D (dimensional) joint set. Consistent feature points are required to calibrate a multi-view camera, and accurate feature points are necessary to obtain high-accu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839544/ https://www.ncbi.nlm.nih.gov/pubmed/35161842 http://dx.doi.org/10.3390/s22031097 |
Sumario: | This paper proposes a new technique for performing 3D static-point cloud registration after calibrating a multi-view RGB-D camera using a 3D (dimensional) joint set. Consistent feature points are required to calibrate a multi-view camera, and accurate feature points are necessary to obtain high-accuracy calibration results. In general, a special tool, such as a chessboard, is used to calibrate a multi-view camera. However, this paper uses joints on a human skeleton as feature points for calibrating a multi-view camera to perform calibration efficiently without special tools. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D joint set obtained through pose estimation as feature points. Since human body information captured by the multi-view camera may be incomplete, a joint set predicted based on image information obtained through this may be incomplete. After efficiently integrating a plurality of incomplete joint sets into one joint set, multi-view cameras can be calibrated by using the combined joint set to obtain extrinsic matrices. To increase the accuracy of calibration, multiple joint sets are used for optimization through temporal iteration. We prove through experiments that it is possible to calibrate a multi-view camera using a large number of incomplete joint sets. |
---|