Cargando…

Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks

As artificial neural network architectures grow increasingly more efficient in time-series prediction tasks, their use for day-ahead electricity price and demand prediction, a task with very specific rules and highly volatile dataset values, grows more attractive. Without a standardized way to compa...

Descripción completa

Detalles Bibliográficos
Autores principales: Pavićević, Milutin, Popović, Tomo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839566/
https://www.ncbi.nlm.nih.gov/pubmed/35161797
http://dx.doi.org/10.3390/s22031051
Descripción
Sumario:As artificial neural network architectures grow increasingly more efficient in time-series prediction tasks, their use for day-ahead electricity price and demand prediction, a task with very specific rules and highly volatile dataset values, grows more attractive. Without a standardized way to compare the efficiency of algorithms and methods for forecasting electricity metrics, it is hard to have a good sense of the strengths and weaknesses of each approach. In this paper, we create models in several neural network architectures for predicting the electricity price on the HUPX market and electricity load in Montenegro and compare them to multiple neural network models on the same basis (using the same dataset and metrics). The results show the promising efficiency of neural networks in general for the task of short-term prediction in the field, with methods combining fully connected layers and recurrent neural or temporal convolutional layers performing the best. The feature extraction power of convolutional layers shows very promising results and recommends the further exploration of temporal convolutional networks in the field.