Cargando…

Adaptive Model for Magnetic Particle Mapping Using Magnetoelectric Sensors

Imaging of magnetic nanoparticles (MNPs) is of great interest in the medical sciences. By using resonant magnetoelectric sensors, higher harmonic excitations of MNPs can be measured and mapped in space. The proper reconstruction of particle distribution via solving the inverse problem is paramount f...

Descripción completa

Detalles Bibliográficos
Autores principales: Friedrich, Ron-Marco, Faupel, Franz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839579/
https://www.ncbi.nlm.nih.gov/pubmed/35161640
http://dx.doi.org/10.3390/s22030894
Descripción
Sumario:Imaging of magnetic nanoparticles (MNPs) is of great interest in the medical sciences. By using resonant magnetoelectric sensors, higher harmonic excitations of MNPs can be measured and mapped in space. The proper reconstruction of particle distribution via solving the inverse problem is paramount for any imaging technique. For this, the forward model needs to be modeled accurately. However, depending on the state of the magnetoelectric sensors, the projection axis for the magnetic field may vary and may not be known accurately beforehand. As a result, the projection axis used in the model may be inaccurate, which can result in inaccurate reconstructions and artifact formation. Here, we show an approach for mapping MNPs that includes sources of uncertainty to both select the correct particle distribution and the correct model simultaneously.