Cargando…
Detection of Organosulfur and Organophosphorus Compounds Using a Hexafluorobutyl Acrylate-Coated Tapered Optical Fibers
This paper presents the results of a study on the possibility of detecting organosulfur and organophosphorus compounds by means of polymer-assisted optical fiber technology. The detection of the aforementioned compounds can be realized by fabricating a polymer-coated tapered optical fiber (TOF), whe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839595/ https://www.ncbi.nlm.nih.gov/pubmed/35160601 http://dx.doi.org/10.3390/polym14030612 |
Sumario: | This paper presents the results of a study on the possibility of detecting organosulfur and organophosphorus compounds by means of polymer-assisted optical fiber technology. The detection of the aforementioned compounds can be realized by fabricating a polymer-coated tapered optical fiber (TOF), where the polymer works as an absorber, which changes the light propagation conditions in the TOF. The TOFs were manufactured based on a standard single-mode fiber for telecommunication purposes and, as an absorbing polymer, hexafluorobutyl acrylate was used, which is sensitive to organosulfur and organophosphorus compounds. The spectral measurements were conducted in a wide optical range—500–1800 nm—covering the visible part of the spectrum as well as near infrared part in order to show the versatility of the proposed solution. Additionally, detailed absorption dynamics measurements were provided for a single wavelength of 1310 nm. The analyses were conducted for two concentrations of evaporating compounds, 10 µL and 100 µL, in a volume of 150 mL. Additionally, a temperature dependency analysis and tests with distilled water were carried out to eliminate the influence of external factors. The results presented in this article confirmed the possibility to provide low-cost sensors for dangerous and harmful chemical compounds using optical fiber technology and polymers as sensitive materials. |
---|