Cargando…
Wear Behaviors of AISI 4145H Drilling Tool Steel under Drilling Fluid Environment Conditions
4145H steel is a commonly used material for downhole tools. However, up to now the wear behavior of 4145H drilling tool steel under real drilling fluid environment conditions is still not clear. In this work, this was investigated using a modified ASTM B611 rubber ring wet grinding test system, in w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839676/ https://www.ncbi.nlm.nih.gov/pubmed/35161163 http://dx.doi.org/10.3390/ma15031221 |
Sumario: | 4145H steel is a commonly used material for downhole tools. However, up to now the wear behavior of 4145H drilling tool steel under real drilling fluid environment conditions is still not clear. In this work, this was investigated using a modified ASTM B611 rubber ring wet grinding test system, in which six kinds of abrasives (talc, dolomite or fluorite, as well as their mixed abrasive with quartz) with metal hardness-to-abrasive hardness ratios (H/H(A)) ranging from 0.25 to 6.25 were used in the drilling fluid for experiments. The results show that the H/H(A) value determined the wear mechanism of 4145H steel. When a single soft abrasive was used (with H/H(A) higher than 1.3–1.5), polishing was the dominantly observed mechanism. While mixed abrasives were applied, a microcutting mechanism due to the ploughing of hard abrasive particles on the steel surface was also observed. The increase in mass fraction of the soft abrasives has little effect on the wear rate of 4145H steel, but its wear rate will significantly increase as the mass fraction of hard abrasives increases. Therefore, in order to extend the life of drilling tools and reduce downhole accidents, the mass fraction of hard particles in the drilling fluid should be reduced as much as possible. |
---|