Cargando…
A Graph Neural Network Based Decentralized Learning Scheme
As an emerging paradigm considering data privacy and transmission efficiency, decentralized learning aims to acquire a global model using the training data distributed over many user devices. It is a challenging problem since link loss, partial device participation, and non-independent and identical...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839979/ https://www.ncbi.nlm.nih.gov/pubmed/35161776 http://dx.doi.org/10.3390/s22031030 |
Sumario: | As an emerging paradigm considering data privacy and transmission efficiency, decentralized learning aims to acquire a global model using the training data distributed over many user devices. It is a challenging problem since link loss, partial device participation, and non-independent and identically distributed (non-iid) data distribution would all deteriorate the performance of decentralized learning algorithms. Existing work may restrict to linear models or show poor performance over non-iid data. Therefore, in this paper, we propose a decentralized learning scheme based on distributed parallel stochastic gradient descent (DPSGD) and graph neural network (GNN) to deal with the above challenges. Specifically, each user device participating in the learning task utilizes local training data to compute local stochastic gradients and updates its own local model. Then, each device utilizes the GNN model and exchanges the model parameters with its neighbors to reach the average of resultant global models. The iteration repeats until the algorithm converges. Extensive simulation results over both iid and non-iid data validate the algorithm’s convergence to near optimal results and robustness to both link loss and partial device participation. |
---|