Cargando…
Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species
Oxidative stress plays an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Baicalin has been shown to exert protective effects in various liver diseases. The mechanism of baicalin’s antioxidative effect in NAFLD is currently unclear. The aim of this study was to invest...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840060/ https://www.ncbi.nlm.nih.gov/pubmed/35276900 http://dx.doi.org/10.3390/nu14030541 |
_version_ | 1784650524788785152 |
---|---|
author | Gao, Wen Xu, Bin Zhang, Yizhi Liu, Shuang Duan, Zhongping Chen, Yu Zhang, Xiaohui |
author_facet | Gao, Wen Xu, Bin Zhang, Yizhi Liu, Shuang Duan, Zhongping Chen, Yu Zhang, Xiaohui |
author_sort | Gao, Wen |
collection | PubMed |
description | Oxidative stress plays an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Baicalin has been shown to exert protective effects in various liver diseases. The mechanism of baicalin’s antioxidative effect in NAFLD is currently unclear. The aim of this study was to investigate the effects and mechanisms of baicalin on oxidative stress in a new tissue-engineered liver model of NAFLD. The 3D model of NAFLD was induced by a fat-supplemented medium (fatty acids, FFA group) for 8 days and baicalin was administered on the 5th day. CCK-8 assay showed that baicalin at concentrations below 100 μM had no obvious cytotoxicity. Baicalin inhibited apoptosis and lactate dehydrogenase release in the FFA group. Baicalin reduced the levels of reactive oxygen species and malondialdehyde induced by FFA, and increased superoxide dismutase and glutathione amounts. However, it did not upregulate nuclear erythroid 2-related factor 2 compared with the FFA group. Mitochondrial morphology was partially restored after baicalin treatment, and ATP5A expression and mitochondrial membrane potential were increased. The superoxide anion scavenging ability of baicalin was enhanced in a dose-dependent manner. In summary, baicalin reduces oxidative stress and protects the mitochondria to inhibit apoptosis in the 3D NAFLD model via its own antioxidant activity. |
format | Online Article Text |
id | pubmed-8840060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88400602022-02-13 Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species Gao, Wen Xu, Bin Zhang, Yizhi Liu, Shuang Duan, Zhongping Chen, Yu Zhang, Xiaohui Nutrients Article Oxidative stress plays an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Baicalin has been shown to exert protective effects in various liver diseases. The mechanism of baicalin’s antioxidative effect in NAFLD is currently unclear. The aim of this study was to investigate the effects and mechanisms of baicalin on oxidative stress in a new tissue-engineered liver model of NAFLD. The 3D model of NAFLD was induced by a fat-supplemented medium (fatty acids, FFA group) for 8 days and baicalin was administered on the 5th day. CCK-8 assay showed that baicalin at concentrations below 100 μM had no obvious cytotoxicity. Baicalin inhibited apoptosis and lactate dehydrogenase release in the FFA group. Baicalin reduced the levels of reactive oxygen species and malondialdehyde induced by FFA, and increased superoxide dismutase and glutathione amounts. However, it did not upregulate nuclear erythroid 2-related factor 2 compared with the FFA group. Mitochondrial morphology was partially restored after baicalin treatment, and ATP5A expression and mitochondrial membrane potential were increased. The superoxide anion scavenging ability of baicalin was enhanced in a dose-dependent manner. In summary, baicalin reduces oxidative stress and protects the mitochondria to inhibit apoptosis in the 3D NAFLD model via its own antioxidant activity. MDPI 2022-01-26 /pmc/articles/PMC8840060/ /pubmed/35276900 http://dx.doi.org/10.3390/nu14030541 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gao, Wen Xu, Bin Zhang, Yizhi Liu, Shuang Duan, Zhongping Chen, Yu Zhang, Xiaohui Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species |
title | Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species |
title_full | Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species |
title_fullStr | Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species |
title_full_unstemmed | Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species |
title_short | Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species |
title_sort | baicalin attenuates oxidative stress in a tissue-engineered liver model of nafld by scavenging reactive oxygen species |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840060/ https://www.ncbi.nlm.nih.gov/pubmed/35276900 http://dx.doi.org/10.3390/nu14030541 |
work_keys_str_mv | AT gaowen baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies AT xubin baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies AT zhangyizhi baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies AT liushuang baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies AT duanzhongping baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies AT chenyu baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies AT zhangxiaohui baicalinattenuatesoxidativestressinatissueengineeredlivermodelofnafldbyscavengingreactiveoxygenspecies |