Cargando…
Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects
Wearable devices use sensors to evaluate physiological parameters, such as the heart rate, pulse rate, number of steps taken, body fat and diet. The continuous monitoring of physiological parameters offers a potential solution to assess personal healthcare. Identifying outliers or anomalies in heart...
Autores principales: | Sunny, Jithin S., Patro, C. Pawan K., Karnani, Khushi, Pingle, Sandeep C., Lin, Feng, Anekoji, Misa, Jones, Lawrence D., Kesari, Santosh, Ashili, Shashaanka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840097/ https://www.ncbi.nlm.nih.gov/pubmed/35161502 http://dx.doi.org/10.3390/s22030756 |
Ejemplares similares
-
Binned Data Provide Better Imputation of Missing Time Series Data from Wearables
por: Chakrabarti, Shweta, et al.
Publicado: (2023) -
Exploring the role of cerebrospinal fluid as analyte in neurologic disorders
por: Pingle, Sandeep C, et al.
Publicado: (2023) -
MTAP loss: a possible therapeutic approach for glioblastoma
por: Patro, C. Pawan K., et al.
Publicado: (2022) -
Traumatic brain injury and immunological outcomes: the double-edged killer
por: Datta, Souvik, et al.
Publicado: (2023) -
Mesenchymal stem cells as living anti-inflammatory therapy for COVID-19 related acute respiratory distress syndrome
por: Lin, Feng, et al.
Publicado: (2020)