Cargando…
Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts
With the rapid proliferation of social networking sites (SNS), automatic topic extraction from various text messages posted on SNS are becoming an important source of information for understanding current social trends or needs. Latent Dirichlet Allocation (LDA), a probabilistic generative model, is...
Autores principales: | Murakami, Riki, Chakraborty, Basabi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840106/ https://www.ncbi.nlm.nih.gov/pubmed/35161598 http://dx.doi.org/10.3390/s22030852 |
Ejemplares similares
-
A Method of Short Text Representation Fusion with Weighted Word Embeddings and Extended Topic Information
por: Liu, Wenfu, et al.
Publicado: (2022) -
TextNetTopics: Text Classification Based Word Grouping as Topics and Topics’ Scoring
por: Yousef, Malik, et al.
Publicado: (2022) -
A Topic Recognition Method of News Text Based on Word Embedding Enhancement
por: Du, Qiming, et al.
Publicado: (2022) -
Short text topic modelling using local and global word-context semantic correlation
por: Kinariwala, Supriya, et al.
Publicado: (2023) -
Integrating topic modeling and word embedding to characterize violent deaths
por: Arseniev-Koehler, Alina, et al.
Publicado: (2022)