Cargando…

Controllable Fabrication of Molecularly Imprinted Microspheres with Nanoporous and Multilayered Structure for Dialysate Regeneration

Adsorption of urea from dialysate is essential for wearable artificial kidneys (WRK). Molecularly imprinted microspheres with nanoporous and multilayered structures are prepared based on liquid–liquid phase separation (LLPS), which can selectively adsorb urea. In addition, we combine the microsphere...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Hongchi, Zhang, Shanguo, Liu, Lu, Ren, Yukun, Xue, Chun, Wu, Wenlong, Chen, Xiaoming, Jiang, Hongyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840109/
https://www.ncbi.nlm.nih.gov/pubmed/35159766
http://dx.doi.org/10.3390/nano12030418
Descripción
Sumario:Adsorption of urea from dialysate is essential for wearable artificial kidneys (WRK). Molecularly imprinted microspheres with nanoporous and multilayered structures are prepared based on liquid–liquid phase separation (LLPS), which can selectively adsorb urea. In addition, we combine the microspheres with a designed polydimethylsiloxane (PDMS) chip to propose an efficient urea adsorption platform. In this work, we propose a formulation of LLPS including Tripropylene glycol diacrylate (TPGDA), ethanol, and acrylic acid (30% v/v), to prepare urea molecularly imprinted microspheres in a simple and highly controllable method. These microspheres have urea molecular imprinting sites on the surface and inside, allowing selective adsorption of urea and preservation of other essential constituents. Previous static studies on urea adsorption have not considered the combination between urea adsorbent and WRK. Therefore, we design the platform embedded with urea molecular imprinted microspheres, which can disturb the fluid motion and improve the efficiency of urea adsorption. These advantages enable the urea absorption platform to be highly promising for dialysate regeneration in WRK.