Cargando…
A Semi-Supervised 3D Indoor Localization Using Multi-Kernel Learning for WiFi Networks
Indoor localization is an important issue for indoor location-based services. As opposed to the other indoor localization approaches, the radio frequency (RF) based approaches are low-energy solutions with simple implementation. The kernel learning has been used for the RF-based indoor localization...
Autores principales: | Chen, Yuh-Shyan, Hsu, Chih-Shun, Chung, Ren-Shao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840110/ https://www.ncbi.nlm.nih.gov/pubmed/35161522 http://dx.doi.org/10.3390/s22030776 |
Ejemplares similares
-
A Semi-Supervised Transfer Learning with Dynamic Associate Domain Adaptation for Human Activity Recognition Using WiFi Signals †
por: Chen, Yuh-Shyan, et al.
Publicado: (2021) -
Multi-AP and Test Point Accuracy of the Results in WiFi Indoor Localization
por: Li, Shuyu, et al.
Publicado: (2022) -
DIY WiFi
por: Jungnickel, Katrina
Publicado: (2013) -
WiFi Indoor Location Based on Area Segmentation
por: Wang, Yanchun, et al.
Publicado: (2022) -
Crowdsourced Indoor Positioning with Scalable WiFi Augmentation †
por: Dong, Yinhuan, et al.
Publicado: (2023)