Cargando…
Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia
The herbal plant Petroselinum crispum (P. crispum) (Mill) is commonly available around the world. In this study, the leaves of the herbal plant P. crispum were collected from the central region of Al-Kharj, Saudi Arabia, to explore their in vitro pharmacological activity. Essential oil from the leav...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840193/ https://www.ncbi.nlm.nih.gov/pubmed/35164196 http://dx.doi.org/10.3390/molecules27030934 |
Sumario: | The herbal plant Petroselinum crispum (P. crispum) (Mill) is commonly available around the world. In this study, the leaves of the herbal plant P. crispum were collected from the central region of Al-Kharj, Saudi Arabia, to explore their in vitro pharmacological activity. Essential oil from the leaves of P. crispum was isolated using the hydrodistillation method. The composition of P. crispum essential oil (PCEO) was determined using Gas chromatography-mass spectrometry (GC-MS). A total of 67 components were identified, representing approximately 96.02% of the total volatile composition. Myristicin was identified as the principal constituent (41.45%). The in vitro biological activity was assessed to evaluate the antioxidant, antimicrobial, and anti-inflammatory potential of PCEO. PCEO showed the highest antimicrobial activity against Candida albicans and Staphylococcus aureus among all the evaluated microbial species. In vitro anti-inflammatory evaluation using albumin and trypsin assays showed the excellent anti-inflammatory potential of PCEO compared to the standard drugs. An in silico study of the primary PCEO compound was conducted using online tools such as PASS, Swiss ADME, and Molecular docking. In silico PASS prediction results supported our in vitro findings. Swiss ADME revealed the drug likeness and safety properties of the major metabolites present in PCEO. Molecular docking results were obtained by studying the interaction of Myristicin with an antifungal (PDB: 1IYL and 3LD6), antibacterial (PDB: 1AJ6 and 1JIJ), antioxidant (PDB: 3NM8 and 1HD2), and anti-inflammatory (3N8Y and 3LN1) receptors supported the in vitro results. Therefore, PCEO or Myristicin might be valuable for developing anti-inflammatory and antimicrobial drugs. |
---|