Cargando…
Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis
Studies have shown that ordinary color cameras can detect the subtle color changes of the skin caused by the heartbeat cycle. Therefore, cameras can be used to remotely monitor the pulse in a non-contact manner. The technology for non-contact physiological measurement in this way is called remote ph...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840211/ https://www.ncbi.nlm.nih.gov/pubmed/35161756 http://dx.doi.org/10.3390/s22031010 |
_version_ | 1784650563256844288 |
---|---|
author | Kuang, Hailan Lv, Fanbing Ma, Xiaolin Liu, Xinhua |
author_facet | Kuang, Hailan Lv, Fanbing Ma, Xiaolin Liu, Xinhua |
author_sort | Kuang, Hailan |
collection | PubMed |
description | Studies have shown that ordinary color cameras can detect the subtle color changes of the skin caused by the heartbeat cycle. Therefore, cameras can be used to remotely monitor the pulse in a non-contact manner. The technology for non-contact physiological measurement in this way is called remote photoplethysmography (rPPG). Heart rate variability (HRV) analysis, as a very important physiological feature, requires us to be able to accurately recover the peak time locations of the rPPG signal. This paper proposes an efficient spatiotemporal attention network (ESA-rPPGNet) to recover high-quality rPPG signal for heart rate variability analysis. First, 3D depth-wise separable convolution and a structure based on mobilenet v3 are used to greatly reduce the time complexity of the network. Next, a lightweight attention block called 3D shuffle attention (3D-SA), which integrates spatial attention and channel attention, is designed to enable the network to effectively capture inter-channel dependencies and pixel-level dependencies. Moreover, ConvGRU is introduced to further improve the network’s ability to learn long-term spatiotemporal feature information. Compared with existing methods, the experimental results show that the method proposed in this paper has better performance and robustness on the remote HRV analysis. |
format | Online Article Text |
id | pubmed-8840211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88402112022-02-13 Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis Kuang, Hailan Lv, Fanbing Ma, Xiaolin Liu, Xinhua Sensors (Basel) Article Studies have shown that ordinary color cameras can detect the subtle color changes of the skin caused by the heartbeat cycle. Therefore, cameras can be used to remotely monitor the pulse in a non-contact manner. The technology for non-contact physiological measurement in this way is called remote photoplethysmography (rPPG). Heart rate variability (HRV) analysis, as a very important physiological feature, requires us to be able to accurately recover the peak time locations of the rPPG signal. This paper proposes an efficient spatiotemporal attention network (ESA-rPPGNet) to recover high-quality rPPG signal for heart rate variability analysis. First, 3D depth-wise separable convolution and a structure based on mobilenet v3 are used to greatly reduce the time complexity of the network. Next, a lightweight attention block called 3D shuffle attention (3D-SA), which integrates spatial attention and channel attention, is designed to enable the network to effectively capture inter-channel dependencies and pixel-level dependencies. Moreover, ConvGRU is introduced to further improve the network’s ability to learn long-term spatiotemporal feature information. Compared with existing methods, the experimental results show that the method proposed in this paper has better performance and robustness on the remote HRV analysis. MDPI 2022-01-28 /pmc/articles/PMC8840211/ /pubmed/35161756 http://dx.doi.org/10.3390/s22031010 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kuang, Hailan Lv, Fanbing Ma, Xiaolin Liu, Xinhua Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis |
title | Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis |
title_full | Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis |
title_fullStr | Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis |
title_full_unstemmed | Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis |
title_short | Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability Analysis |
title_sort | efficient spatiotemporal attention network for remote heart rate variability analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840211/ https://www.ncbi.nlm.nih.gov/pubmed/35161756 http://dx.doi.org/10.3390/s22031010 |
work_keys_str_mv | AT kuanghailan efficientspatiotemporalattentionnetworkforremoteheartratevariabilityanalysis AT lvfanbing efficientspatiotemporalattentionnetworkforremoteheartratevariabilityanalysis AT maxiaolin efficientspatiotemporalattentionnetworkforremoteheartratevariabilityanalysis AT liuxinhua efficientspatiotemporalattentionnetworkforremoteheartratevariabilityanalysis |