Cargando…
Temperature-Dependent Conformation Behavior of Isolated Poly(3-hexylthiopene) Chains
We use atomistic as well as coarse-grained molecular dynamics simulations to study the conformation of a single poly(3-hexylthiopene) chain as a function of temperature. We find that mainly bundle and toroid structures appear with bundles becoming more abundant for decreasing temperatures. We compar...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840214/ https://www.ncbi.nlm.nih.gov/pubmed/35160539 http://dx.doi.org/10.3390/polym14030550 |
Sumario: | We use atomistic as well as coarse-grained molecular dynamics simulations to study the conformation of a single poly(3-hexylthiopene) chain as a function of temperature. We find that mainly bundle and toroid structures appear with bundles becoming more abundant for decreasing temperatures. We compare an atomistic and a Martini-based coarse-grained model which we find in very good agreement. We further illustrate how the temperature dependence of P3HT can be connected to that of simple Lennard–Jones model polymers in a vacuum. Upon adding solvent (THF) we observe the occurrence of a prominent swelling of the molecular size at a temperature of about 220 K. This swelling is in close agreement with the interpretation of recent spectroscopic experiments which allows us to explain the experimental observations by an increased frequency of bundle structures. |
---|