Cargando…
Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices
Accurate crop yield forecasting is essential in the food industry’s decision-making process, where vegetation condition index (VCI) and thermal condition index (TCI) coupled with machine learning (ML) algorithms play crucial roles. The drawback, however, is that a one-fits-all prediction model is of...
Autores principales: | Pham, Hoa Thi, Awange, Joseph, Kuhn, Michael, Nguyen, Binh Van, Bui, Luyen K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840272/ https://www.ncbi.nlm.nih.gov/pubmed/35161461 http://dx.doi.org/10.3390/s22030719 |
Ejemplares similares
-
Evaluation of Three Feature Dimension Reduction Techniques for Machine Learning-Based Crop Yield Prediction Models
por: Pham, Hoa Thi, et al.
Publicado: (2022) -
Precipitation and Soil Moisture Spatio-Temporal Variability and Extremes over Vietnam (1981–2019): Understanding Their Links to Rice Yield
por: Bui, Luyen K., et al.
Publicado: (2022) -
Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield
por: Fei, Shuaipeng, et al.
Publicado: (2022) -
Self-Supervised Learning of Satellite-Derived Vegetation Indices for Clustering and Visualization of Vegetation Types
por: Sharma, Ram C., et al.
Publicado: (2021) -
Synergistic integration of optical and microwave satellite data for crop yield estimation
por: Mateo-Sanchis, Anna, et al.
Publicado: (2019)