Cargando…

Low-Cost Ka-Band Satellite Receiver Data Preprocessing for Tropospheric Propagation Studies

Satellite tropospheric propagation studies strongly rely on beacon receiver measurements. We were interested in performing a measurement campaign to characterize rain attenuation statistics. In this article, we outline some of the characteristics and drawbacks one faces when trying to perform a radi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pastoriza-Santos, Vicente, Machado, Fernando, Nandi, Dalia, Pérez-Fontán, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840284/
https://www.ncbi.nlm.nih.gov/pubmed/35161788
http://dx.doi.org/10.3390/s22031043
Descripción
Sumario:Satellite tropospheric propagation studies strongly rely on beacon receiver measurements. We were interested in performing a measurement campaign to characterize rain attenuation statistics. In this article, we outline some of the characteristics and drawbacks one faces when trying to perform a radio wave satellite beacon propagation experiment at the Ka-band with low-cost measurement equipment. We used an affordable beacon receiver consisting of a commercial low-noise block down-converter, an outdoor dual-reflector antenna, and a software-defined radio unit. To measure rain attenuation events, we needed to work out where the reference signal level was at all times. However, as we did not have a radiometer to remove the impact of gases and clouds, since it is a very expensive device, we used a procedure that involved the subtraction of a stable and reliable reference level (template) from the raw received beacon level. This template was extracted from observations during non-rainy periods. The procedure implemented for extracting the template was based on the same data processing methodology used by other authors in this field. Here, we describe through specific examples the main characteristics of the templates extracted on non-rainy days, as well as the impact of some meteorological parameters and unavoidable, but small antenna pointing errors.