Cargando…

Antidiabetic Potential of Volatile Cinnamon Oil: A Review and Exploration of Mechanisms Using In Silico Molecular Docking Simulations

Cinnamon has been used as a flavoring and medicinal agent for centuries. Much research has focused on cinnamon bark powder, which contains antioxidants, flavonoids, carotenoids, vitamins, minerals, fiber, and small amounts of essential oil. However, isolated and concentrated cinnamon essential oil m...

Descripción completa

Detalles Bibliográficos
Autores principales: Stevens, Nicole, Allred, Kathryn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840343/
https://www.ncbi.nlm.nih.gov/pubmed/35164117
http://dx.doi.org/10.3390/molecules27030853
Descripción
Sumario:Cinnamon has been used as a flavoring and medicinal agent for centuries. Much research has focused on cinnamon bark powder, which contains antioxidants, flavonoids, carotenoids, vitamins, minerals, fiber, and small amounts of essential oil. However, isolated and concentrated cinnamon essential oil may also have important medicinal qualities, particularly in antidiabetic therapy. Some of the most common essential oil constituents identified in the literature include cinnamaldehyde, eugenol, and beta-caryophyllene. Due to their high concentration in cinnamon essential oil, these constituents are hypothesized to have the most significant physiological activity. Here, we present a brief review of literature on cinnamon oil and its constituents as they relate to glucose metabolism and diabetic pathogenesis. We also present molecular docking simulations of these cinnamon essential oil constituents (cinnamaldehyde, eugenol, beta-caryophyllene) that suggest interaction with several key enzymes in glucometabolic pathways.