Cargando…
A Vaginitis Classification Method Based on Multi-Spectral Image Feature Fusion
Vaginitis is one of the commonly encountered diseases of female reproductive tract infections. The clinical diagnosis mainly relies on manual observation under a microscope. There has been some investigation on the classification of vaginitis diseases based on computer-aided diagnosis to reduce the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840418/ https://www.ncbi.nlm.nih.gov/pubmed/35161875 http://dx.doi.org/10.3390/s22031132 |
Sumario: | Vaginitis is one of the commonly encountered diseases of female reproductive tract infections. The clinical diagnosis mainly relies on manual observation under a microscope. There has been some investigation on the classification of vaginitis diseases based on computer-aided diagnosis to reduce the workload of clinical laboratory staff. However, the studies only using RGB images limit the development of vaginitis diagnosis. Through multi-spectral technology, we propose a vaginitis classification algorithm based on multi-spectral image feature layer fusion. Compared with the traditional RGB image, our approach improves the classification accuracy by 11.39%, precision by 15.82%, and recall by 27.25%. Meanwhile, we prove that the level of influence of each spectrum on the disease is distinctive, and the subdivided spectral image is more conducive to the image analysis of vaginitis disease. |
---|