Cargando…
Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte
Traditionally, the discovery of new materials has often depended on scholars’ computational and experimental experience. The traditional trial-and-error methods require many resources and computing time. Due to new materials’ properties becoming more complex, it is difficult to predict and identify...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840428/ https://www.ncbi.nlm.nih.gov/pubmed/35161101 http://dx.doi.org/10.3390/ma15031157 |