Cargando…
Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte
Traditionally, the discovery of new materials has often depended on scholars’ computational and experimental experience. The traditional trial-and-error methods require many resources and computing time. Due to new materials’ properties becoming more complex, it is difficult to predict and identify...
Autores principales: | Hu, Qianyu, Chen, Kunfeng, Liu, Fei, Zhao, Mengying, Liang, Feng, Xue, Dongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840428/ https://www.ncbi.nlm.nih.gov/pubmed/35161101 http://dx.doi.org/10.3390/ma15031157 |
Ejemplares similares
-
Thin Solid
Electrolyte Separators for Solid-State
Lithium–Sulfur Batteries
por: Kim, Soochan, et al.
Publicado: (2022) -
Methylamine Lithium Borohydride as Electrolyte for All‐Solid‐State Batteries
por: Grinderslev, Jakob B., et al.
Publicado: (2022) -
Solid-State Electrolyte for Lithium-Air Batteries: A Review
por: Zhu, Qiancheng, et al.
Publicado: (2023) -
Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery
por: Sakuda, Atsushi, et al.
Publicado: (2013) -
Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte
por: Mahmoud, Morsi M., et al.
Publicado: (2016)