Cargando…
Incomplete Region Estimation and Restoration of 3D Point Cloud Human Face Datasets
Owing to imperfect scans, occlusions, low reflectance of the scanned surface, and packet loss, there may be several incomplete regions in the 3D point cloud dataset. These missing regions can degrade the performance of recognition, classification, segmentation, or upsampling methods in point cloud d...
Autores principales: | Uddin, Kutub, Jeong, Tae Hyun, Oh, Byung Tae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840486/ https://www.ncbi.nlm.nih.gov/pubmed/35161471 http://dx.doi.org/10.3390/s22030723 |
Ejemplares similares
-
Dataset for trailer angle estimation using radar point clouds
por: Olutomilayo, Kunle T., et al.
Publicado: (2021) -
Graph Convolutional Network for 3D Object Pose Estimation in a Point Cloud
por: Jung, Tae-Won, et al.
Publicado: (2022) -
3D Face Point Cloud Reconstruction and Recognition Using Depth Sensor
por: Wang, Cheng-Wei, et al.
Publicado: (2021) -
3D Static Point Cloud Registration by Estimating Temporal Human Pose at Multiview
por: Park, Byung-Seo, et al.
Publicado: (2022) -
Estimating the success of re-identifications in incomplete datasets using generative models
por: Rocher, Luc, et al.
Publicado: (2019)