Cargando…

Graphene Nanopore Arrays for Electron Focusing and Antifocusing

We have shown, via numerical simulations, that a symmetric array of nanopores with appropriately designed shapes and sizes arranged along an arc of a circle in a graphene nanoribbon can focus or antifocus an incident ballistic electron wavefunction. The position of the focal/antifocal region depends...

Descripción completa

Detalles Bibliográficos
Autores principales: Mladenovic, Damir, Dragoman, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840741/
https://www.ncbi.nlm.nih.gov/pubmed/35159874
http://dx.doi.org/10.3390/nano12030529
Descripción
Sumario:We have shown, via numerical simulations, that a symmetric array of nanopores with appropriately designed shapes and sizes arranged along an arc of a circle in a graphene nanoribbon can focus or antifocus an incident ballistic electron wavefunction. The position of the focal/antifocal region depends on the electron energy. This effect, which takes place in the energy interval of one-transverse-mode propagation in the nanoribbon, highlights the similarities with plasmonic focusing by an array of holes in a metallic sheet, while emphasizing the differences between the propagation and excitation of electrons and electromagnetic fields. In particular, the electronic antilens has no counterpart in classical optics.