Cargando…
Graphene Nanopore Arrays for Electron Focusing and Antifocusing
We have shown, via numerical simulations, that a symmetric array of nanopores with appropriately designed shapes and sizes arranged along an arc of a circle in a graphene nanoribbon can focus or antifocus an incident ballistic electron wavefunction. The position of the focal/antifocal region depends...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840741/ https://www.ncbi.nlm.nih.gov/pubmed/35159874 http://dx.doi.org/10.3390/nano12030529 |
Sumario: | We have shown, via numerical simulations, that a symmetric array of nanopores with appropriately designed shapes and sizes arranged along an arc of a circle in a graphene nanoribbon can focus or antifocus an incident ballistic electron wavefunction. The position of the focal/antifocal region depends on the electron energy. This effect, which takes place in the energy interval of one-transverse-mode propagation in the nanoribbon, highlights the similarities with plasmonic focusing by an array of holes in a metallic sheet, while emphasizing the differences between the propagation and excitation of electrons and electromagnetic fields. In particular, the electronic antilens has no counterpart in classical optics. |
---|