Cargando…
Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS
LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have been developed to evaluate the r...
Autores principales: | Palm, Emma, Kruve, Anneli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840743/ https://www.ncbi.nlm.nih.gov/pubmed/35164283 http://dx.doi.org/10.3390/molecules27031013 |
Ejemplares similares
-
MS2Tox Machine Learning
Tool for Predicting the Ecotoxicity
of Unidentified Chemicals in Water by Nontarget LC-HRMS
por: Peets, Pilleriin, et al.
Publicado: (2022) -
Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS
por: Malm, Louise, et al.
Publicado: (2021) -
Electrospray Ionization
Efficiency Predictions and
Analytical Standard Free Quantification for SFC/ESI/HRMS
por: Bieber, Stefan, et al.
Publicado: (2023) -
Quantification for non-targeted LC/MS screening without standard substances
por: Liigand, Jaanus, et al.
Publicado: (2020) -
Bypassing the
Identification: MS2Quant for Concentration
Estimations of Chemicals Detected with Nontarget LC-HRMS from MS(2) Data
por: Sepman, Helen, et al.
Publicado: (2023)