Cargando…
Review of the Performance of High-Voltage Composite Insulators
In the present literature survey, we focused on the performance of polymeric materials encompassing silicone rubber (SiR), ethylene propylene diene monomer (EPDM) and epoxy resins loaded with micro, nano, and micro/nano hybrid fillers. These insulators are termed as composite insulators. The scope o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840764/ https://www.ncbi.nlm.nih.gov/pubmed/35160421 http://dx.doi.org/10.3390/polym14030431 |
Sumario: | In the present literature survey, we focused on the performance of polymeric materials encompassing silicone rubber (SiR), ethylene propylene diene monomer (EPDM) and epoxy resins loaded with micro, nano, and micro/nano hybrid fillers. These insulators are termed as composite insulators. The scope of the added fillers/additives was limited to the synthetic inorganic family. Special attention was directed to understanding the effect of fillers on the improvement of the thermal conductivity, dielectric strength, mechanical strength, corona discharge resistance, and tracking and erosion resistance performance of polymeric materials for use as high-voltage transmission line insulators. The survey showed that synthetic inorganic fillers, which include silica (SiO(2)) and hexagonal boron nitride (h-BN), are potential fillers to improve insulation performance of high-voltage insulators. Furthermore, nano and micro/nano filled composites performed better due to the better interaction between the filler and polymer matrix as compared to their only micro- or nano filled counterparts. Finally, some aspects requiring future work to further exploit fillers are identified and discussed. |
---|