Cargando…

Apoptotic changes and aquaporin-1 expression in the choroid plexus of cerebral malaria patients

BACKGROUND: Cerebral malaria (CM) is associated with sequestration of parasitized red blood cells (PRBCs) in the capillaries. Often, the association of CM with cerebral oedema is related with high mortality rate. Morphological changes of the choroid plexus (CP) and caspase-3 expression in CM have no...

Descripción completa

Detalles Bibliográficos
Autores principales: Srisook, Charit, Glaharn, Supattra, Punsawad, Chuchard, Viriyavejakul, Parnpen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841049/
https://www.ncbi.nlm.nih.gov/pubmed/35151337
http://dx.doi.org/10.1186/s12936-022-04044-6
Descripción
Sumario:BACKGROUND: Cerebral malaria (CM) is associated with sequestration of parasitized red blood cells (PRBCs) in the capillaries. Often, the association of CM with cerebral oedema is related with high mortality rate. Morphological changes of the choroid plexus (CP) and caspase-3 expression in CM have not been reported. In addition, limited knowledge is known regarding the role of aquaporin (AQP)-1 in CM. The present study evaluated changes in the CP, explored apoptotic changes and AQP-1 expression in CP epithelial cells (CPECs) in fatal CM patients. METHODS: CP from fatal Plasmodium falciparum malaria patients (5 non-CM [NCM], 16 CM) were retrieved and prepared for histopathological evaluation. Caspase-3 and AQP-1 expressions in CPECs were investigated by immunohistochemistry. RESULTS: Histologically, apoptotic changes in CPECs were significantly observed in the CM group compared with the NCM and normal control (NC) groups (p < 0.05). These changes included cytoplasmic and nuclear condensation/shrinkage of CPECs and detachment of CPECs from the basement membrane. The apoptotic changes were positively correlated with caspase-3 expression in the nuclei of CPECs. In addition, AQP-1 expression in CPECs was significantly decreased in the CM group compared with the NCM and NC groups (all p < 0.001). A negative correlation (r(s) =  − 0.450, p = 0.024) was documented between caspase-3 expression in the nuclei of CPECs and AQP-1. CONCLUSIONS: Apoptotic changes and altered AQP-1 expression may contribute to CPEC dysfunction and subsequently reduce cerebrospinal fluid production, affecting the water homeostasis in the brains of patients with CM. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12936-022-04044-6.