Cargando…

A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters

PURPOSE: Stereotactic body radiotherapy (SBRT) is an important treatment modality for lung cancer patients, however, tumor local recurrence rate remains some challenge and there is no reliable prediction tool. This study aims to develop a prediction model of local control for lung cancer patients un...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Li-Mei, Huang, Bao-Tian, Chen, Chuang-Zhen, Wang, Ying, Su, Chuang-Huang, Peng, Guo-Bo, Zeng, Cheng-Bing, Wu, Yan-Xuan, Wang, Ruo-Heng, Huang, Kang, Qiu, Zi-Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841423/
https://www.ncbi.nlm.nih.gov/pubmed/35174072
http://dx.doi.org/10.3389/fonc.2021.819047
_version_ 1784650832652795904
author Luo, Li-Mei
Huang, Bao-Tian
Chen, Chuang-Zhen
Wang, Ying
Su, Chuang-Huang
Peng, Guo-Bo
Zeng, Cheng-Bing
Wu, Yan-Xuan
Wang, Ruo-Heng
Huang, Kang
Qiu, Zi-Han
author_facet Luo, Li-Mei
Huang, Bao-Tian
Chen, Chuang-Zhen
Wang, Ying
Su, Chuang-Huang
Peng, Guo-Bo
Zeng, Cheng-Bing
Wu, Yan-Xuan
Wang, Ruo-Heng
Huang, Kang
Qiu, Zi-Han
author_sort Luo, Li-Mei
collection PubMed
description PURPOSE: Stereotactic body radiotherapy (SBRT) is an important treatment modality for lung cancer patients, however, tumor local recurrence rate remains some challenge and there is no reliable prediction tool. This study aims to develop a prediction model of local control for lung cancer patients undergoing SBRT based on radiomics signature combining with clinical and dosimetric parameters. METHODS: The radiomics model, clinical model and combined model were developed by radiomics features, incorporating clinical and dosimetric parameters and radiomics signatures plus clinical and dosimetric parameters, respectively. Three models were established by logistic regression (LR), decision tree (DT) or support vector machine (SVM). The performance of models was assessed by receiver operating characteristic curve (ROC) and DeLong test. Furthermore, a nomogram was built and was assessed by calibration curve, Hosmer-Lemeshow and decision curve. RESULTS: The LR method was selected for model establishment. The radiomics model, clinical model and combined model showed favorite performance and calibration (Area under the ROC curve (AUC) 0.811, 0.845 and 0.911 in the training group, 0.702, 0.786 and 0.818 in the validation group, respectively). The performance of combined model was significantly superior than the other two models. In addition, Calibration curve and Hosmer-Lemeshow (training group: P = 0.898, validation group: P = 0.891) showed good calibration of combined nomogram and decision curve proved its clinical utility. CONCLUSIONS: The combined model based on radiomics features plus clinical and dosimetric parameters can improve the prediction of 1-year local control for lung cancer patients undergoing SBRT.
format Online
Article
Text
id pubmed-8841423
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88414232022-02-15 A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters Luo, Li-Mei Huang, Bao-Tian Chen, Chuang-Zhen Wang, Ying Su, Chuang-Huang Peng, Guo-Bo Zeng, Cheng-Bing Wu, Yan-Xuan Wang, Ruo-Heng Huang, Kang Qiu, Zi-Han Front Oncol Oncology PURPOSE: Stereotactic body radiotherapy (SBRT) is an important treatment modality for lung cancer patients, however, tumor local recurrence rate remains some challenge and there is no reliable prediction tool. This study aims to develop a prediction model of local control for lung cancer patients undergoing SBRT based on radiomics signature combining with clinical and dosimetric parameters. METHODS: The radiomics model, clinical model and combined model were developed by radiomics features, incorporating clinical and dosimetric parameters and radiomics signatures plus clinical and dosimetric parameters, respectively. Three models were established by logistic regression (LR), decision tree (DT) or support vector machine (SVM). The performance of models was assessed by receiver operating characteristic curve (ROC) and DeLong test. Furthermore, a nomogram was built and was assessed by calibration curve, Hosmer-Lemeshow and decision curve. RESULTS: The LR method was selected for model establishment. The radiomics model, clinical model and combined model showed favorite performance and calibration (Area under the ROC curve (AUC) 0.811, 0.845 and 0.911 in the training group, 0.702, 0.786 and 0.818 in the validation group, respectively). The performance of combined model was significantly superior than the other two models. In addition, Calibration curve and Hosmer-Lemeshow (training group: P = 0.898, validation group: P = 0.891) showed good calibration of combined nomogram and decision curve proved its clinical utility. CONCLUSIONS: The combined model based on radiomics features plus clinical and dosimetric parameters can improve the prediction of 1-year local control for lung cancer patients undergoing SBRT. Frontiers Media S.A. 2022-01-31 /pmc/articles/PMC8841423/ /pubmed/35174072 http://dx.doi.org/10.3389/fonc.2021.819047 Text en Copyright © 2022 Luo, Huang, Chen, Wang, Su, Peng, Zeng, Wu, Wang, Huang and Qiu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Luo, Li-Mei
Huang, Bao-Tian
Chen, Chuang-Zhen
Wang, Ying
Su, Chuang-Huang
Peng, Guo-Bo
Zeng, Cheng-Bing
Wu, Yan-Xuan
Wang, Ruo-Heng
Huang, Kang
Qiu, Zi-Han
A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters
title A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters
title_full A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters
title_fullStr A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters
title_full_unstemmed A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters
title_short A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters
title_sort combined model to improve the prediction of local control for lung cancer patients undergoing stereotactic body radiotherapy based on radiomic signature plus clinical and dosimetric parameters
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841423/
https://www.ncbi.nlm.nih.gov/pubmed/35174072
http://dx.doi.org/10.3389/fonc.2021.819047
work_keys_str_mv AT luolimei acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT huangbaotian acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT chenchuangzhen acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT wangying acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT suchuanghuang acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT pengguobo acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT zengchengbing acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT wuyanxuan acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT wangruoheng acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT huangkang acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT qiuzihan acombinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT luolimei combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT huangbaotian combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT chenchuangzhen combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT wangying combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT suchuanghuang combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT pengguobo combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT zengchengbing combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT wuyanxuan combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT wangruoheng combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT huangkang combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters
AT qiuzihan combinedmodeltoimprovethepredictionoflocalcontrolforlungcancerpatientsundergoingstereotacticbodyradiotherapybasedonradiomicsignatureplusclinicalanddosimetricparameters