Cargando…
Development of a deep learning‐based method to diagnose pulmonary ground‐glass nodules by sequential computed tomography imaging
BACKGROUND: Early identification of the malignant propensity of pulmonary ground‐glass nodules (GGNs) can relieve the pressure from tracking lesions and personalized treatment adaptation. The purpose of this study was to develop a deep learning‐based method using sequential computed tomography (CT)...
Autores principales: | Qiu, Zhixin, Wu, Qingxia, Wang, Shuo, Chen, Zhixia, Lin, Feng, Zhou, Yuyan, Jin, Jing, Xian, Jinghong, Tian, Jie, Li, Weimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841714/ https://www.ncbi.nlm.nih.gov/pubmed/34994091 http://dx.doi.org/10.1111/1759-7714.14305 |
Ejemplares similares
-
Primary Pulmonary MALT Lymphoma with Ground-glass Nodule
por: Tahara, Masahiro, et al.
Publicado: (2017) -
Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules
Using Computed Tomography Radiomics Parameters
por: liang, Ling, et al.
Publicado: (2022) -
Lymphadenectomy is Unnecessary for Pure Ground-Glass Opacity Pulmonary Nodules
por: Lin, Yi-Han, et al.
Publicado: (2020) -
Software-based risk stratification of pulmonary adenocarcinomas manifesting as pure ground glass nodules on computed tomography
por: Nemec, Ursula, et al.
Publicado: (2017) -
Surgical Extent for Ground Glass Nodules
por: Cho, Suk Ki
Publicado: (2021)