Cargando…
Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought
Pre-anthesis drought is expected to greatly increase yield losses in wheat (Triticum aestivum L.), one of the most important crops worldwide. Most studies investigate the effects of pre-anthesis drought only at maturity. The physiology of the plant before anthesis and how it is affected during droug...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841719/ https://www.ncbi.nlm.nih.gov/pubmed/35173756 http://dx.doi.org/10.3389/fpls.2022.775652 |
_version_ | 1784650897659265024 |
---|---|
author | Verbeke, Sarah Padilla-Díaz, Carmen María Haesaert, Geert Steppe, Kathy |
author_facet | Verbeke, Sarah Padilla-Díaz, Carmen María Haesaert, Geert Steppe, Kathy |
author_sort | Verbeke, Sarah |
collection | PubMed |
description | Pre-anthesis drought is expected to greatly increase yield losses in wheat (Triticum aestivum L.), one of the most important crops worldwide. Most studies investigate the effects of pre-anthesis drought only at maturity. The physiology of the plant before anthesis and how it is affected during drought is less studied. Our study focused on physiological patterns in wheat plants during pre- and post-anthesis drought. To this end, we measured leaf xylem water potential, osmotic potential and water content in different plant parts at a high temporal frequency: every 3 days, three times a day. The experiment started just before booting until 2 weeks after flowering. Drought stress was induced by withholding irrigation with rewatering upon turgor loss, which occurred once before and once after anthesis. The goal was to investigate the patterns of osmotic adjustment, when it is used for protection against drought, and if the strategy changes during the phenological development of the plant. Our data gave no indication of daily osmotic adjustment, but did show a delicate control of the osmotic potential during drought in both leaves and stem. Under high drought stress, osmotic potential decreased to avoid further water loss. Before anthesis, rewatering restored leaf water potential and osmotic potential quickly. After anthesis, rewatering restored water potential in the flag leaves, but the osmotic potential in the stem and flag leaf remained low longer. Osmotic adjustment was thus maintained longer after anthesis, showing that the plants invest more energy in the osmotic adjustment after anthesis than before anthesis. We hypothesize that this is because the plants consider the developing ear after anthesis a more important carbohydrate sink than the stem, which is a carbohydrate sink before anthesis, to be used later as a reserve. Low osmotic potential in the stem allowed turgor maintenance, while the low osmotic potential in the flag leaf led to an increase in leaf turgor beyond the level of the control plants. This allowed leaf functioning under drought and assured that water was redirected to the flag leaf and not used to refill the stem storage. |
format | Online Article Text |
id | pubmed-8841719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88417192022-02-15 Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought Verbeke, Sarah Padilla-Díaz, Carmen María Haesaert, Geert Steppe, Kathy Front Plant Sci Plant Science Pre-anthesis drought is expected to greatly increase yield losses in wheat (Triticum aestivum L.), one of the most important crops worldwide. Most studies investigate the effects of pre-anthesis drought only at maturity. The physiology of the plant before anthesis and how it is affected during drought is less studied. Our study focused on physiological patterns in wheat plants during pre- and post-anthesis drought. To this end, we measured leaf xylem water potential, osmotic potential and water content in different plant parts at a high temporal frequency: every 3 days, three times a day. The experiment started just before booting until 2 weeks after flowering. Drought stress was induced by withholding irrigation with rewatering upon turgor loss, which occurred once before and once after anthesis. The goal was to investigate the patterns of osmotic adjustment, when it is used for protection against drought, and if the strategy changes during the phenological development of the plant. Our data gave no indication of daily osmotic adjustment, but did show a delicate control of the osmotic potential during drought in both leaves and stem. Under high drought stress, osmotic potential decreased to avoid further water loss. Before anthesis, rewatering restored leaf water potential and osmotic potential quickly. After anthesis, rewatering restored water potential in the flag leaves, but the osmotic potential in the stem and flag leaf remained low longer. Osmotic adjustment was thus maintained longer after anthesis, showing that the plants invest more energy in the osmotic adjustment after anthesis than before anthesis. We hypothesize that this is because the plants consider the developing ear after anthesis a more important carbohydrate sink than the stem, which is a carbohydrate sink before anthesis, to be used later as a reserve. Low osmotic potential in the stem allowed turgor maintenance, while the low osmotic potential in the flag leaf led to an increase in leaf turgor beyond the level of the control plants. This allowed leaf functioning under drought and assured that water was redirected to the flag leaf and not used to refill the stem storage. Frontiers Media S.A. 2022-01-31 /pmc/articles/PMC8841719/ /pubmed/35173756 http://dx.doi.org/10.3389/fpls.2022.775652 Text en Copyright © 2022 Verbeke, Padilla-Díaz, Haesaert and Steppe. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Verbeke, Sarah Padilla-Díaz, Carmen María Haesaert, Geert Steppe, Kathy Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought |
title | Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought |
title_full | Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought |
title_fullStr | Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought |
title_full_unstemmed | Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought |
title_short | Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought |
title_sort | osmotic adjustment in wheat (triticum aestivum l.) during pre- and post-anthesis drought |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841719/ https://www.ncbi.nlm.nih.gov/pubmed/35173756 http://dx.doi.org/10.3389/fpls.2022.775652 |
work_keys_str_mv | AT verbekesarah osmoticadjustmentinwheattriticumaestivumlduringpreandpostanthesisdrought AT padilladiazcarmenmaria osmoticadjustmentinwheattriticumaestivumlduringpreandpostanthesisdrought AT haesaertgeert osmoticadjustmentinwheattriticumaestivumlduringpreandpostanthesisdrought AT steppekathy osmoticadjustmentinwheattriticumaestivumlduringpreandpostanthesisdrought |