Cargando…
Entrainment of the Drosophila clock by the visual system
Circadian clocks evolved as an adaptation to the cyclic change of day and night. To precisely adapt to this environment, the endogenous period has to be adjusted every day to exactly 24 hours by a process called entrainment. Organisms can use several external cues, called zeitgebers, to adapt. These...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842342/ https://www.ncbi.nlm.nih.gov/pubmed/35174330 http://dx.doi.org/10.1177/2633105520903708 |
Sumario: | Circadian clocks evolved as an adaptation to the cyclic change of day and night. To precisely adapt to this environment, the endogenous period has to be adjusted every day to exactly 24 hours by a process called entrainment. Organisms can use several external cues, called zeitgebers, to adapt. These include changes in temperature, humidity, or light. The latter is the most powerful signal to synchronize the clock in animals. Research shows that a complex visual system and circadian photoreceptors work together to adjust animal physiology to the outside world. This review will focus on the importance of the visual system for clock synchronization in the fruit fly Drosophila melanogaster. It will cover behavioral and physiological evidence that supports the importance of the visual system in light entrainment. |
---|