Cargando…

Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images

PURPOSE: To investigate the feasibility of extracting a low-dimensional latent structure of anterior segment optical coherence tomography (AS-OCT) images by use of a β-variational autoencoder (β-VAE). METHODS: We retrospectively collected 2111 AS-OCT images from 2111 eyes of 1261 participants from t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shon, Kilhwan, Sung, Kyung Rim, Kwak, Jiehoon, Shin, Joong Won, Lee, Joo Yeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842480/
https://www.ncbi.nlm.nih.gov/pubmed/35133405
http://dx.doi.org/10.1167/tvst.11.2.11
_version_ 1784651059670548480
author Shon, Kilhwan
Sung, Kyung Rim
Kwak, Jiehoon
Shin, Joong Won
Lee, Joo Yeon
author_facet Shon, Kilhwan
Sung, Kyung Rim
Kwak, Jiehoon
Shin, Joong Won
Lee, Joo Yeon
author_sort Shon, Kilhwan
collection PubMed
description PURPOSE: To investigate the feasibility of extracting a low-dimensional latent structure of anterior segment optical coherence tomography (AS-OCT) images by use of a β-variational autoencoder (β-VAE). METHODS: We retrospectively collected 2111 AS-OCT images from 2111 eyes of 1261 participants from the ongoing Asan Glaucoma Progression Study. After hyperparameter optimization, the images were analyzed with β-VAE. RESULTS: The mean participant age was 64.4 years, with mean values of visual field index and mean deviation of 86.4% and −5.33 dB, respectively. After experiments, a latent space size of 6 and β value of 5(3) were selected for latent space analysis with β-VAE. Latent variables were successfully disentangled, showing readily interpretable distinct characteristics, such as the overall depth and area of the anterior chamber (η1), pupil diameter (η2), iris profile (η3 and η4), and corneal curvature (η5). CONCLUSIONS: β-VAE can successfully be applied for disentangled latent space representation of AS-OCT images, revealing the high possibility of applying unsupervised learning in the medical image analysis. TRANSLATIONAL RELEVANCE: This study demonstrates that a deep learning–based latent space model can be applied for the analysis of AS-OCT images.
format Online
Article
Text
id pubmed-8842480
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-88424802022-02-18 Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images Shon, Kilhwan Sung, Kyung Rim Kwak, Jiehoon Shin, Joong Won Lee, Joo Yeon Transl Vis Sci Technol Article PURPOSE: To investigate the feasibility of extracting a low-dimensional latent structure of anterior segment optical coherence tomography (AS-OCT) images by use of a β-variational autoencoder (β-VAE). METHODS: We retrospectively collected 2111 AS-OCT images from 2111 eyes of 1261 participants from the ongoing Asan Glaucoma Progression Study. After hyperparameter optimization, the images were analyzed with β-VAE. RESULTS: The mean participant age was 64.4 years, with mean values of visual field index and mean deviation of 86.4% and −5.33 dB, respectively. After experiments, a latent space size of 6 and β value of 5(3) were selected for latent space analysis with β-VAE. Latent variables were successfully disentangled, showing readily interpretable distinct characteristics, such as the overall depth and area of the anterior chamber (η1), pupil diameter (η2), iris profile (η3 and η4), and corneal curvature (η5). CONCLUSIONS: β-VAE can successfully be applied for disentangled latent space representation of AS-OCT images, revealing the high possibility of applying unsupervised learning in the medical image analysis. TRANSLATIONAL RELEVANCE: This study demonstrates that a deep learning–based latent space model can be applied for the analysis of AS-OCT images. The Association for Research in Vision and Ophthalmology 2022-02-08 /pmc/articles/PMC8842480/ /pubmed/35133405 http://dx.doi.org/10.1167/tvst.11.2.11 Text en Copyright 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Shon, Kilhwan
Sung, Kyung Rim
Kwak, Jiehoon
Shin, Joong Won
Lee, Joo Yeon
Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
title Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
title_full Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
title_fullStr Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
title_full_unstemmed Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
title_short Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images
title_sort development of a β-variational autoencoder for disentangled latent space representation of anterior segment optical coherence tomography images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842480/
https://www.ncbi.nlm.nih.gov/pubmed/35133405
http://dx.doi.org/10.1167/tvst.11.2.11
work_keys_str_mv AT shonkilhwan developmentofabvariationalautoencoderfordisentangledlatentspacerepresentationofanteriorsegmentopticalcoherencetomographyimages
AT sungkyungrim developmentofabvariationalautoencoderfordisentangledlatentspacerepresentationofanteriorsegmentopticalcoherencetomographyimages
AT kwakjiehoon developmentofabvariationalautoencoderfordisentangledlatentspacerepresentationofanteriorsegmentopticalcoherencetomographyimages
AT shinjoongwon developmentofabvariationalautoencoderfordisentangledlatentspacerepresentationofanteriorsegmentopticalcoherencetomographyimages
AT leejooyeon developmentofabvariationalautoencoderfordisentangledlatentspacerepresentationofanteriorsegmentopticalcoherencetomographyimages