Cargando…

Focal fMRI signal enhancement with implantable inductively coupled detectors

Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yi, Wang, Qi, Choi, Sangcheon, Zeng, Hang, Takahashi, Kengo, Qian, Chunqi, Yu, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842502/
https://www.ncbi.nlm.nih.gov/pubmed/34896291
http://dx.doi.org/10.1016/j.neuroimage.2021.118793
Descripción
Sumario:Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2–3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.