Cargando…

Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride

Excessive exposure to the sources of fluoride in drinking water, oral care products, and food is a widespread problem. Fluoride is associated with impairment in child intelligence development. It causes DNA damage, oxidative stress, and mitochondrial dysfunction, mainly due to the production of reac...

Descripción completa

Detalles Bibliográficos
Autores principales: Mirsaeed-Ghazi, Farzaneh, Sharifzadeh, Mohammad, Ashrafi-Kooshk, Mohammad Reza, Karima, Saeed, Meknatkhah, Sogol, Riazi, Gholamhossein, Mokhtari, Farzad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842617/
https://www.ncbi.nlm.nih.gov/pubmed/35194443
http://dx.doi.org/10.22037/ijpr.2021.114919.15107
_version_ 1784651083495243776
author Mirsaeed-Ghazi, Farzaneh
Sharifzadeh, Mohammad
Ashrafi-Kooshk, Mohammad Reza
Karima, Saeed
Meknatkhah, Sogol
Riazi, Gholamhossein
Mokhtari, Farzad
author_facet Mirsaeed-Ghazi, Farzaneh
Sharifzadeh, Mohammad
Ashrafi-Kooshk, Mohammad Reza
Karima, Saeed
Meknatkhah, Sogol
Riazi, Gholamhossein
Mokhtari, Farzad
author_sort Mirsaeed-Ghazi, Farzaneh
collection PubMed
description Excessive exposure to the sources of fluoride in drinking water, oral care products, and food is a widespread problem. Fluoride is associated with impairment in child intelligence development. It causes DNA damage, oxidative stress, and mitochondrial dysfunction, mainly due to the production of reactive oxygen species (ROS). It has been postulated that the use of antioxidants such as astaxanthin, may alleviate fluoride’s adverse effects. This study assessed the effects of fluoride on cellular ROS content and rat’s learning and memory ability and investigated the protective potency of astaxanthin with emphasis on the role of glutamate using the Morris Water Maze test, glutamate concentration determination, and western blot techniques. The fluoride treatment of cells results in an increment of cellular ROS, whereas astaxanthin inhibits lipid peroxidation. Fluoride significantly decreases the cellular glutamate uptake and glutamate transporter, protein level, possibly due to the disruption of mitochondrial energy metabolism and defect of the transporter recycle, respectively. The in-vivo study indicated that the treatment of rats with fluoride led to a loss of learning, while astaxanthin improved memory dysfunction. Measurement of ROS and glutamate levels of rat brain hippocampus showed that fluoride increased the ROS but decreased the glutamate. On the other hand, the utilization of astaxanthin decreased the brain ROS content and increased the glutamate level. It seems that fluoride disrupts the normal function of neurons via increment of ROS production and decrement of glutamate level, whereas astaxanthin has neuroprotective potency due to the ROS scavenging ability.
format Online
Article
Text
id pubmed-8842617
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Shaheed Beheshti University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-88426172022-02-21 Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride Mirsaeed-Ghazi, Farzaneh Sharifzadeh, Mohammad Ashrafi-Kooshk, Mohammad Reza Karima, Saeed Meknatkhah, Sogol Riazi, Gholamhossein Mokhtari, Farzad Iran J Pharm Res Original Article Excessive exposure to the sources of fluoride in drinking water, oral care products, and food is a widespread problem. Fluoride is associated with impairment in child intelligence development. It causes DNA damage, oxidative stress, and mitochondrial dysfunction, mainly due to the production of reactive oxygen species (ROS). It has been postulated that the use of antioxidants such as astaxanthin, may alleviate fluoride’s adverse effects. This study assessed the effects of fluoride on cellular ROS content and rat’s learning and memory ability and investigated the protective potency of astaxanthin with emphasis on the role of glutamate using the Morris Water Maze test, glutamate concentration determination, and western blot techniques. The fluoride treatment of cells results in an increment of cellular ROS, whereas astaxanthin inhibits lipid peroxidation. Fluoride significantly decreases the cellular glutamate uptake and glutamate transporter, protein level, possibly due to the disruption of mitochondrial energy metabolism and defect of the transporter recycle, respectively. The in-vivo study indicated that the treatment of rats with fluoride led to a loss of learning, while astaxanthin improved memory dysfunction. Measurement of ROS and glutamate levels of rat brain hippocampus showed that fluoride increased the ROS but decreased the glutamate. On the other hand, the utilization of astaxanthin decreased the brain ROS content and increased the glutamate level. It seems that fluoride disrupts the normal function of neurons via increment of ROS production and decrement of glutamate level, whereas astaxanthin has neuroprotective potency due to the ROS scavenging ability. Shaheed Beheshti University of Medical Sciences 2021 /pmc/articles/PMC8842617/ /pubmed/35194443 http://dx.doi.org/10.22037/ijpr.2021.114919.15107 Text en https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Mirsaeed-Ghazi, Farzaneh
Sharifzadeh, Mohammad
Ashrafi-Kooshk, Mohammad Reza
Karima, Saeed
Meknatkhah, Sogol
Riazi, Gholamhossein
Mokhtari, Farzad
Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride
title Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride
title_full Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride
title_fullStr Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride
title_full_unstemmed Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride
title_short Astaxanthin Decreases Spatial Memory and Glutamate Transport Impairment Induced by Fluoride
title_sort astaxanthin decreases spatial memory and glutamate transport impairment induced by fluoride
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842617/
https://www.ncbi.nlm.nih.gov/pubmed/35194443
http://dx.doi.org/10.22037/ijpr.2021.114919.15107
work_keys_str_mv AT mirsaeedghazifarzaneh astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride
AT sharifzadehmohammad astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride
AT ashrafikooshkmohammadreza astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride
AT karimasaeed astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride
AT meknatkhahsogol astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride
AT riazigholamhossein astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride
AT mokhtarifarzad astaxanthindecreasesspatialmemoryandglutamatetransportimpairmentinducedbyfluoride