Cargando…
PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks
BACKGROUND: Early identification of pregnant women at risk for preterm birth (PTB), a major cause of infant mortality and morbidity, has a significant potential to improve prenatal care. However, we lack effective predictive models which can accurately forecast PTB and complement these predictions w...
Autores principales: | AlSaad, Rawan, Malluhi, Qutaibah, Boughorbel, Sabri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842907/ https://www.ncbi.nlm.nih.gov/pubmed/35164820 http://dx.doi.org/10.1186/s13040-022-00289-8 |
Ejemplares similares
-
Interpreting patient-Specific risk prediction using contextual decomposition of BiLSTMs: application to children with asthma
por: AlSaad, Rawan, et al.
Publicado: (2019) -
dbPTB: a database for preterm birth
por: Uzun, Alper, et al.
Publicado: (2012) -
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues
por: EL-Manzalawy, Yasser, et al.
Publicado: (2016) -
Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB)
por: Blois, Sandra M., et al.
Publicado: (2020) -
A Practical and Scalable Tool to Find Overlaps between Sequences
por: Haj Rachid, Maan, et al.
Publicado: (2015)