Cargando…

Peripheral Interventions Radiation Exposure Reduction Using a Sensor-Based Navigation System: A Proof-of-Concept Study

BACKGROUND: Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasi...

Descripción completa

Detalles Bibliográficos
Autores principales: L’Allier, Philippe L., Richer, Louis-Philippe, McSpadden, Luke C., Dorval, Jean-François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843893/
https://www.ncbi.nlm.nih.gov/pubmed/35198940
http://dx.doi.org/10.1016/j.cjco.2021.10.004
Descripción
Sumario:BACKGROUND: Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. METHODS: All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. RESULTS: Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m(2), P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97). CONCLUSIONS: These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.