Cargando…

Oxygen generating scaffolds regenerate critical size bone defects

Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable ox...

Descripción completa

Detalles Bibliográficos
Autores principales: Suvarnapathaki, Sanika, Wu, Xinchen, Zhang, Tengfei, Nguyen, Michelle A., Goulopoulos, Anastasia A., Wu, Bin, Camci-Unal, Gulden
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843972/
https://www.ncbi.nlm.nih.gov/pubmed/35224292
http://dx.doi.org/10.1016/j.bioactmat.2021.11.002
Descripción
Sumario:Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO(2)) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8–9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm(3) bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.