Cargando…
A FAIR and AI-ready Higgs boson decay dataset
To enable the reusability of massive scientific datasets by humans and machines, researchers aim to adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step...
Autores principales: | Chen, Yifan, Huerta, E. A., Duarte, Javier, Harris, Philip, Katz, Daniel S., Neubauer, Mark S., Diaz, Daniel, Mokhtar, Farouk, Kansal, Raghav, Park, Sang Eon, Kindratenko, Volodymyr V., Zhao, Zhizhen, Rusack, Roger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844008/ https://www.ncbi.nlm.nih.gov/pubmed/35165298 http://dx.doi.org/10.1038/s41597-021-01109-0 |
Ejemplares similares
-
FAIR for AI: An interdisciplinary and international community building perspective
por: Huerta, E. A., et al.
Publicado: (2023) -
AI Fairness
por: Mahoney, Trisha
Publicado: (2020) -
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023) -
Numerical computations with GPUs
por: Kindratenko, Volodymyr
Publicado: (2014) -
Explainable AI as evidence of fair decisions
por: Leben, Derek
Publicado: (2023)