Cargando…
Predictive classification of Alzheimer’s disease using brain imaging and genetic data
For now, Alzheimer’s disease (AD) is incurable. But if it can be diagnosed early, the correct treatment can be used to delay the disease. Most of the existing research methods use single or multi-modal imaging features for prediction, relatively few studies combine brain imaging with genetic feature...
Autores principales: | Sheng, Jinhua, Xin, Yu, Zhang, Qiao, Wang, Luyun, Yang, Ze, Yin, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844076/ https://www.ncbi.nlm.nih.gov/pubmed/35165327 http://dx.doi.org/10.1038/s41598-022-06444-9 |
Ejemplares similares
-
Dissociation of energy connectivity and functional connectivity in Alzheimer's disease is associated with maintenance of cognitive performance
por: Sheng, Jinhua, et al.
Publicado: (2023) -
Alzheimer’s disease, mild cognitive impairment, and normal aging distinguished by multi-modal parcellation and machine learning
por: Sheng, Jinhua, et al.
Publicado: (2020) -
Identifying and characterizing different stages toward Alzheimer's disease using ordered core features and machine learning
por: Sheng, Jinhua, et al.
Publicado: (2021) -
Alzheimer's Disease Classification Through Imaging Genetic Data With IGnet
por: Wang, Jade Xiaoqing, et al.
Publicado: (2022) -
Parallel MR image reconstruction based on triple cycle optimization
por: Sheng, Jinhua, et al.
Publicado: (2022)