Cargando…
Stochastic dynamics of a few sodium atoms in presence of a cold potassium cloud
Single particle resolution is a requirement for numerous experimental protocols that emulate the dynamics of small systems in a bath. Here, we accurately resolve through atom counting the stochastic dynamics of a few sodium atoms in presence of a cold potassium cloud. This capability enables us to r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844084/ https://www.ncbi.nlm.nih.gov/pubmed/35165302 http://dx.doi.org/10.1038/s41598-022-05778-8 |
Sumario: | Single particle resolution is a requirement for numerous experimental protocols that emulate the dynamics of small systems in a bath. Here, we accurately resolve through atom counting the stochastic dynamics of a few sodium atoms in presence of a cold potassium cloud. This capability enables us to rule out the effect of inter-species interaction on sodium atom number dynamics, at very low atomic densities present in these experiments. We study the noise sources for sodium and potassium in a common framework. Thereby, we assign the detection limits to 4.3 atoms for potassium and 0.2 atoms (corresponding to 96% fidelity) for sodium. This opens possibilities for future experiments with a few atoms immersed in a quantum degenerate gas. |
---|