Cargando…
A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models
This study aims to develop an assumption-free data-driven model to accurately forecast COVID-19 spread. Towards this end, we firstly employed Bayesian optimization to tune the Gaussian process regression (GPR) hyperparameters to develop an efficient GPR-based model for forecasting the recovered and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844088/ https://www.ncbi.nlm.nih.gov/pubmed/35165290 http://dx.doi.org/10.1038/s41598-022-06218-3 |