Cargando…
A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models
This study aims to develop an assumption-free data-driven model to accurately forecast COVID-19 spread. Towards this end, we firstly employed Bayesian optimization to tune the Gaussian process regression (GPR) hyperparameters to develop an efficient GPR-based model for forecasting the recovered and...
Autores principales: | Alali, Yasminah, Harrou, Fouzi, Sun, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844088/ https://www.ncbi.nlm.nih.gov/pubmed/35165290 http://dx.doi.org/10.1038/s41598-022-06218-3 |
Ejemplares similares
-
Comparative study of machine learning methods for COVID-19 transmission forecasting
por: Dairi, Abdelkader, et al.
Publicado: (2021) -
Forecasting emergency department overcrowding: A deep learning framework
por: Harrou, Fouzi, et al.
Publicado: (2020) -
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
por: Zeroual, Abdelhafid, et al.
Publicado: (2020) -
EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector
por: Dairi, Abdelkader, et al.
Publicado: (2022) -
A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas pipeline systems
por: Wang, Wu, et al.
Publicado: (2021)