Cargando…
K-Theory for Semigroup C*-Algebras and Partial Crossed Products
Using the Baum–Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly 0-E-unitary inverse semigroups, or equivalently, for a class of reduced partial crossed products. This generalizes and gives a new proof of previous K-theory results of Cuntz, Echter...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844246/ https://www.ncbi.nlm.nih.gov/pubmed/35221349 http://dx.doi.org/10.1007/s00220-021-04194-9 |
Sumario: | Using the Baum–Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly 0-E-unitary inverse semigroups, or equivalently, for a class of reduced partial crossed products. This generalizes and gives a new proof of previous K-theory results of Cuntz, Echterhoff and the author. Our K-theory formula applies to a rich class of C*-algebras which are generated by partial isometries. For instance, as new applications which could not be treated using previous results, we discuss semigroup C*-algebras of Artin monoids, Baumslag-Solitar monoids and one-relator monoids, as well as C*-algebras generated by right regular representations of semigroups of number-theoretic origin, and C*-algebras attached to tilings. |
---|